인공지능의 발전과 오픈소스 전략에 대하여

AI경영연구WG 김동현

 

인공지능의 발전은 생각보다 오래 전부터 진행되었다. 1950년에 앨런 튜링이 “계산기계와 지성(Computing machinery and intelligence)”이라는 논문을 통해 처음으로 인공지능에 대한 개념의 토대를 마련했다. 이후, 1956년에 “다트머스 회의(Dartmouth Conference)”로 알려진 모임에서 처음으로 인공지능(AI: Artificial intelligence)이라는 용어를 사용하였고 튜링이 제안한 “생각하는 기계”를 구체화하기 위한 것들을 논의 하기 시작했다.

인공지능의 70년 역사

 
그리고 오늘날까지 눈에 띄지 않게 성장과 쇠퇴를 반복하다 2016년 인공지능 바둑 프로그램인 알파고가 등장하면서 그 동안 인공지능 기술 발전이 상당히 진행되었다는 것을 보여주었다. 사실, 이때만해도 알파고는 인공지능의 분야중 인지능력에 대한 가능성을 보여줬을뿐 직접적으로 무언가를 제시한 것은 아니었으며 알파고와 같은 인공지능 기술을 가지기 위해서 얼마나 많은 비용과 인력이 투자되었을지 파악하기도 어려운 것으로 느껴졌다.

하지만 알파고의 등장 이후 4년이 지난 지금은 어떤 산업군이든 인공지능 접목을 당연하게 생각하고 있다. 최근의 인공지능 기술들은 간단한 서비스 형태도 제공되어 어려운 기술적인 이해가 없어도 누구나 데이터만 있으면 이미 만들어진 인공지능 모델에 적용하여 학습시켜 볼 수 있으며 심지어 그 결과가 좋다면 제품에 바로 적용도 할 수 있다.
 

“도대체 최근 4년동안 무슨 일이 있었던 것일까?”

 

인공지능 기술 분야에서 글로벌 선도기업인 구글의 사례를 중심으로 살펴보자.

  • 2015년 구글의 인공지능 플랫폼 텐서플로우(Tensor Flow)를 무료로 공개 하였다.
  • 2016년 알파고로 유명한 구글 딥마인드에서 인공지능 기술 테스트 플랫폼인 딥마인드랩(DeepMind Lab)을 외부에 무료 공개 하였다.
  • 2017년 10월부터 고사양의 하드웨어(GPU, TPU)환경을 제공하는 인공지능 개발 환경 서비스 코랩(CoLab)을 무료로 사용할 수 있도록 하고 있다.

 

“인공지능 알고리즘을 구현하는 플랫폼 개발에는 대규모 자본이 투입되었으며, 고도의 기술력이 집약되어 있을 텐데 구글은 왜 무료로 외부에 공개했을까?”

 

인공지능 기술은 전통적인 ICT 산업부문을 넘어 전통산업을 포함하는 매우 광범위한 영역으로 응용된다. 그리고 응용대상 영역에서 얻어지는 데이터 및 사용자 피드백 등 케이스 의존적인 성격이 강하다. 이러한 이유로 인공지능의 기본 알고리즘은 금융, 의료, 제조, 교육 등 모든 분야에 응용가능하지만 각각의 응용대상 분야 자체에 대한 노하우가 없으면 수많은 알고리즘들은 실제로 구현 될 수 없다.

구글과 같은 글로벌 선도기업도 혼자만의 힘으로는 인공지능 기술의 보급 확산을 지금과 같은 수준으로 올릴 순 없었다. 오픈 소스 생태계를 활용하여 다양한 분야에서 인공지능 기술을 응용하는 주체들이 모두 협력했기 때문에 가능했던 것이다.

이러한 이유로, 구글뿐만 아니라 MS, IBM, Facebook, Open AI 등등 인공지능 기술을 이끄는 대부분의 글로벌 기업들이 오픈소스 생태계에 투자를 하고 있다. 그리고 이런 투자 덕분에 인공지능에 대한 보급과 화산이 그 전과 달리 매우 빠르게 진행 될 수 있었다.
 

“그러면 여기서 궁금한 것이 생긴다. 거대 글로벌 기업의 기술에 참여를 하여 발전을 도와주고 있는데, 정작 참여하고 있는 기업이나 개발자들 에게는 무엇이 남는 것일까?”

 

인공지능 연구 환경의 진입장벽이 매우 낮아졌다.

 

인공지능 기술은 쉽게 생각하면 주어진 데이터들을 다양한 차원으로 비교 탐색 및 분석하여 의미 있는 패턴을 찾아주는 것이다. 여기에는 여러 기술들이 요구되는데 크게 보면 2가지로 구분 할 수 있다. 분석을 할 데이터를 인공지능이 학습할 수 있도록 데이터를 탐색하고 정제하는 전처리 기술과 인공지능 모델을 실제로 연구하고 구현 할 플랫폼이다.

그 동안, 이런 인공지능 기술은 바로 상용화가 불확실한 경우가 많아서 자본이 부족한 기업은 투자가 어려웠고, 하더라도 리스크를 줄이기 위해 대학원이나 전문 연구기관 연구과제를 빌려와 진행하는 경우가 많았다. 이런 경우 굉장히 학문적으로 접근하기 때문에 현실적으로 매출에 좋은 영향을 주지 못 했다.

그러나 글로벌 기업이 엄청난 기술과 자본을 들여 만든 인공지능 연구/개발 플랫폼 기술을 모두 오픈소스로 공개 함으로써 인공지능 기술을 도입하려는 기업은 초기 기술 개발 비용에 대한 부담없이 오픈소스를 통해서 글로벌 기업의 기술력을 제공 받아 연구개발을 시작할 수 있게 된 것이다.

 

데이터 분석에 사용되는 알고리즘 기법들의 표준화이다.

 

오픈소스 프로젝트를 사용하는 참가 기업들이 많아지면 각 산업 분야의 다양한 정보와 최신 트랜드에 대한 문제점의 해결책을 공유하여 운영되기 때문에 유연하고 호환성이 높은 표준 모듈/라이브러리들이 개발 될 수 있다.

데이터 분석에 사용되는 알고리즘들은 크게 Classification(분류), Clustering(군집), Regression(회귀), Forecast(예측), Dimensional reduction(차원 축소) 등의 유형로 나누어진다. 그리고 각 유형에는 다양한 분석/학습 알고리즘 기법들로 세분화 된다. 이러한 것 때문에 인공지능 구현을 위해서는 알고리즘에 대한 많은 지식이 있어야 했고 최소 대학원 석사 이상이어야 인공지능 분야에서 일을 할 수 있었다.

Select Algorithm

 

하지만 최근 몇년사이에 오픈소스 생태계에 참여한 기업과 개발자들의 노력 덕분에 이러한 어려운 내용들이 정형화 되고 패키지/모듈로 간단히 제공되면서 이론에 대한 이해만 있으면 쉽게 가져다가 원하는 인공지능 모델을 구현해 낼 수 있게 되었다.

 

이러한 오픈소스 생태계의 이점들로 인해서 자원이 부족한 기업들도 잘 만들어진 글로벌 기업의 기술을 적은 비용으로 가져다가 사용할 수 있는 기회를 얻게 된 것이다.

 

국내 기업들은 오픈소스를 하면 기업의 기술이나 노하우가 노출된다고 생각하여 잘 시도 하지 않는다. 하지만 다르게 생각해보면 정말 잘 만든 기술도 많은 사람들로부터 활용되지 않으면 피드백이 적을 수 밖에 없고 빠르게 변화하는 IT 트랜드를 놓치기 쉽다. 많은 글로벌 IT 선도 기업들이 이러한 개념을 잘 이해하고 오픈소스 생태계를 전략적으로 잘 활용하고 있다. 국내 기업과 연구자들도 오픈소스 생태계를 적극 참여하여 미래 글로벌 IT 시장을 선도해 나가는 기회로 삼을 수 있기록 하는 것이 중요할 것 같다.

 

Comments

comments